Showing posts with label JSF. Show all posts
Showing posts with label JSF. Show all posts

Sunday, 14 April 2013

75 years on - lessons (and some comfort?) for the Joint Strike Fighter from the Spitfire program

A new fighter aircraft is designed. It embodies a new engine, new construction techniques and new armament. The prototype shows great promise and an order is placed for a significant number of aircraft before production gets under way. But development is slow, and mass production of the aircraft encounters one frustrating delay after another. Its critics grow in number and there is talk of cancellation of the project.

Am I talking about the F-35 Lightning II Joint Strike Fighter? No, I’m talking about that most iconic of combat aircraft the Vickers Supermarine Spitfire, the first production example of which made its maiden flight 75 years ago, on 14 May 1938, in the hands of test pilot Jeffrey Quill.

 That flight took place over two years after the prototype made its maiden flight in the hands of Vickers’ chief test pilot Mutt Summers, on 6 March 1936. A production order for 320 Spitfires was placed with Supermarine just a week after a service test pilot, Flight Lieutenant Humphrey Edwardes-Jones, flew the prototype for the first time on 26 May 1936.

While two years might not seem a long time today, in those days it was an unconscionable delay – and quite avoidable. The result of the mounting delays to the Spitfire program was very nearly the cancellation of the project; right up to early 1940, just months before the Battle of Britain, the Spitfire was seen within the British Air Ministry as an ‘interim’ solution pending development of a more suitable fighter to take on the German Luftwaffe’s Messerschmitt Bf109.

Indeed, so disenchanted with the Spitfire was British officialdom, and so concerned at British industry’s lack of capacity to build fighters in the numbers required, that in March 1940 the British government placed an order with North American Aviation to design and build 320 single-seat fighters of a new design, to be armed with four .303in machine guns and powered by the Allison V-1710 engine. The first of these flew in October 1940 and deliveries began in January 1941, by which time this new aeroplane had been christened the Mustang. But that’s another story.

In 1939 the official view, conditioned by extreme disappointment over the difficulties of putting the aircraft into production, was that production of the Spitfire would eventually be phased out and Supermarine’s factories turned over to production of the twin-engined Westland Whirlwind or Bristol Beaufighter. But when the energetic Lord Beaverbrook was appointed Minister for Aircraft Production in May 1940 he immediately saw that the coming air battle would be fought, and must be won, by the RAF’s Spitfires and Hawker Hurricanes so he made production of these aircraft an absolute priority. 

What was the problem with the Spitfire? There were four, and they all compounded each other.

The first was that although Supermarine was best-known for building the series of Rolls-Royce powered high-speed floatplanes, the S4 through to the S6B, which resulted in Great Britain winning permanent ownership of the prestigious Schneider Trophy, this wasn’t its stock in trade. What it did most was build relatively small quantities of amphibious bi-planes. Supermarine was, in modern terms, little more than a ‘smart’ cottage industry, turning out barely a couple of dozen hand-built aluminium, wood and fabric float planes each year from a factory at Woolston, on the River Itchen, near Southampton.

Notwithstanding the pure genius of its chief designer, RJ Mitchell (and his under-sung aerodynamicist, the Canadian Beverley Shenstone), Supermarine was simply not capable of building a high-speed all-metal fighter in the quantities demanded by the RAF. Its inherent lack of capacity was compounded by the shambolic nature of the Supermarine project office. For all Mitchell’s talent, he and the company’s management were unable to get a grip on the practicalities of producing aircraft in large numbers. Indeed, Supermarine’s parent company, Vickers, sent no less a figure than Dr Barnes Wallis (of Wellington bomber and ‘Dambuster’ bouncing bomb fame) to Supermarine’s plant in order to lick it into shape. Mitchell objected violently and Wallis was posted back to Vickers’ Weybridge factory; Supermarine continued on its traditional path, straight towards disaster.

The second major problem facing the Spitfire program was that, like its exact contemporary the Bf109, the Spitfire was a radical departure in the design and construction of high speed fighters. For a start, it was all-metal. This was the only way to achieve Mitchell’s design aim of a thin, strong wing and slim fuselage capable of sustaining very high speeds. Secondly, it was designed for speed, not ease of production: there was barely a straight line on the aircraft; rather, like a woman’s body, a series of elegant curves blended gracefully into one another to produce a single glorious whole. Seen from any angle it was arresting and beautiful. And it was an absolute pig to manufacture.

Initially, Supermarine planned to build most of the fuselage at Woolston and carry out final assembly at its nearby Eastleigh aerodrome. Manufacture of the wings and other components such as the entire tail section would be outsourced to local manufacturers.

The problems with this scheme were that, first, none of the sub-contractors had much experience of manufacturing complex metal shapes in such numbers; and secondly, Supermarine’s drawings left something to be desired – there simply wasn’t the detailed information in them required to produce these items accurately, and Supermarine didn’t provide much help. This problem found an uncomfortable echo when Australian shipyards began fabricating hull modules for the Royal Australian Navy’s new class of Air Warfare Destroyers and found that the drawings supplied from ship designer Navantia, via the Australian project office, didn’t contain sufficient information for the Australian yard concerned to build the first block module properly.

This leads to the third major problem with the Spitfire program. In order to build them at the necessary production rate plans were made for Spitfires to be built at a so-called ‘Shadow Factory’ in Castle Bromwich, near Birmingham. The factory was built (slowly and by a surly, poorly managed and strike-prone workforce) and was to be managed by no less than Lord Nuffield, the founder of the Morris car company who was considered to be an expert in mass production. In fact, by the late 1930s Nuffield was well past his prime and his organisation had absolutely no idea about manufacturing aircraft. 

Indeed, according to Leo McKinstry in his outstanding book “Spitfire – Portrait of a Legend”, one motor industry veteran at Castle Bromwich was horrified at the suggestion the Spitfire should be made of aluminium. “Make things with aluminium?” he exclaimed. “Not bloody likely! That stuff is OK for pots and pans but we are going to make things to beat the Nazis. We’ll use iron.” Another Castle Bromwich manager insisted the Spitfire’s wing should be redesigned so that it was easier to manufacture: “The air would not know the difference between straight and curved leading edges.”

In both cases the Air Ministry had to insist the aircraft was built according to the drawings. In the end, Beaverbrook wrested control of Castle Bromwich from Nuffield, put a team of Vickers managers into the place and progress began to be made. But the planned production rate of 100 aircraft a month wasn’t achieved until well into the summer of 1940. Had the Spitfire gone into full production on anything like the original schedule it’s likely RAF Fighter Command’s frontline squadrons would all have been equipped with this aircraft and the toll wrought on the Luftwaffe during the summer of 1940 would have been even higher. But that’s all by the way.

The fourth major problem with the Spitfire program wasn’t strictly a Spitfire problem at all. It was a whole of industry problem that exists today in Australia, the UK and, increasingly now in the USA. It was, quite simply, that the British aviation industry didn’t now how to build large numbers of aircraft. The Air Ministry and RAF kept a number of aircraft companies alive during the 1920s and ‘30s by awarding small contracts to design and build experimental aircraft, or relatively small numbers of new aircraft. There was some progress in the design and construction of aircraft and aero-engines, some of it driven by challenges such as the Schneider Trophy races which stimulated innovation by designers across Europe and North America. But until the menace of Nazism took shape and cast its shadow across Europe there was no great official appetite for ground-breaking innovation and massive numbers.

Jeffrey Quill sets out the problem quite elegantly in his book “Spitfire – A Test Pilot’s Story”.

“The awkward truth was that in 1936 no firm in the industry was in a position to respond effectively to a sudden demand for great expansion of its production capacity and simultaneously make great strides in the technological field… With hindsight, the initial shortcomings of the [Spitfire] subcontracting scheme can only be attributed to the same basic cause – namely that for years the industry had been starved of orders and could barely keep its factories in business on the orders it did receive. So where were the experienced and capable sub-contractors to be found on the fringe of a half-starved industry? They simply did not exist.”

There’s a lesson here for any government that professes a need for a proficient, and efficient, aerospace or defence industry.

The long and short of it is that the Spitfire was a great design, so far ahead of its time that the British aircraft industry had to learn (slowly and painfully) a whole new set of techniques for manufacturing it in the quantities required. And once its initial manufacturing problems were overcome the Spitfire became the pre-eminent fighter of its generation. Its only real peers were the Focke-Wulf 190, Messerschmitt Bf109 and the Rolls-Royce Merlin-powered variants of the North American P-51 Mustang. The Hawker Hurricane, to which the RAF and the free world owes a massive debt, was a stopgap in technical terms and never close to the Spitfire and Bf109 in performance terms, but it was exactly right for its time and made history in its day.

So what does all this have to do with the F-35 Lightning II?

Only this: the Spitfire, like the F-111, was a fundamentally good design that pushed the boundaries of technical knowledge and manufacturing practice. It’s arguable that these aircraft should have been designed (or re-designed) so they were easier to manufacture. One could make the same argument for the F-35 family. That’s to miss the point, in all cases: these aircraft were designed they way they were because they had a very specific job to do. Changing the design to make the aircraft easier to build would in each case have compromised its combat effectiveness. Every aircraft design represent some sort of compromise in any case, but in the case of the Spitfire, whose design is now well documented, RJ Mitchell refused to compromise on aero-propulsive performance – and quite rightly. The F-111 was designed for sustained high speed flight at low altitude in all weathers, day and night. If it couldn’t do that then there was no point to the aircraft – despite its technical challenges in the early days nobody sought to compromise its performance as a way of making the challenges easier to surmount.

The F-35 is designed to be stealthy, to be a respectable (though not necessarily a stellar) performer and to endow its pilot with massive situational awareness. Leaving aside the difficulties of integrating an avionics and sensor suite of unprecedented capability and complexity, mass producing a stealthy aircraft involves manufacturing technology challenges which no aircraft company has ever had to master before. There can be no doubt these challenges will be mastered, in time. Meanwhile, the battle the F-35’s advocates need to win is for the hearts and minds of the customers, and this become harder to win the longer the battle goes on. The examples of both the Spitfire and the F-111 show that persistence brings rewards.

There is one significant difference between the Spitfire and the F-35. The Spitfire’s manufacturer had no idea, in the early days, how to build a modern all-metal fighter in large numbers; and it lacked sub-contractors who understood new technologies and the techniques associated with new materials. The same is not true of the F-35. The consortium building it – Northrop Grumman and BAE Systems, led by prime contractor Lockheed Martin, with Pratt & Whitney developing the F135 engine – has an industrial pedigree that embraces collaborative, multi-national projects dancing on the leading edge of aerospace technology. The international supply chain, fed from eight different countries, isn’t carrying any freeloaders in a technical sense. But the technical challenges remain: a new construction process; a new engine and, for the F-35B variant, a new propulsion system; and a new weapon system based on a suite of avionics and sensors that’s never been integrated on such a scale before, and certainly not in a single-seat aircraft.

It’s wrong to suggest that the F-35 is the Spitfire of the 21st century, but the history of the Spitfire program should give heart to the team developing the F-35.

Saturday, 26 December 2009

Best wishes of the season

I've left it until Boxing Day to wish everybody the compliments of the season and offer my best wishes for 2010.

Why? Because I'm slack.

Its been an interesting year - plenty happening on the defence and aerospace side of things: the Australian government has ordered 14 Joint Strike Fighters (why just 14?); the first RAAF Super Hornet is flying and will be delivered early-ish in 2010; the AWD project continues to move along; the RAAF has short-circuited Canberra's cumbersome bureaucracy and laid its hands on a couple of Heron UAVs while the Army and DMO mess around trying to decide what they'e going to do about acquiring Tactical UAVs under JP129; the government says we need 12 bigger and better submarines than the current Collins-class, and mouths are already pursed censoriously at the prospect of an industry program that's bigger and more complex than the Collins, and run by the same stakeholders; and Navy at some point will have to decide what sort of helicopters it wants. Or, rather, somebody will have to tell the Navy what sort of helicopters it's going to get, because it's not a choice I'd entrust to the RAN just at present. There are two contenders and they need to be compared properly, and on its performance to date I'm not confident that the Fleet Air Arm is equipped to either make that choice or cope with the consequences of getting it wrong.

My viewpoint on this has been sharpened by my three-month sabbatical, courtesy of the Defence Materials Technology Centre (DMTC) in Melbourne, studying defence industry innovation. I'll be flagging up papers and survey results in due course, but it's becoming clear that there are a number of factors which both stimulate industry innovation and affect the prospect of its success; these include the professional and technical expertise of the customer and their effect on his ability to identify, estimate and manage risk; and the customer's willingness to invest in a developmental project - the two seem to be related.

It's nice to see the DMO concentrating on the professional and technical development of its people, but the recent Mortimer and Pappas reviews of Australian defence procurement urge the government to buy more equipment off the shelf, which could see opportunities for Australian innovators reduced significantly. Hope not, but we'll see.

I'll try and blog a bit more frequently next year; the difficulty is finding something interesting to say that I'm not being to write for somebody else. Is that a New Years Resolution? Fat chance!

Wednesday, 19 August 2009

Sorry for the long silence...

...but I've been a bit busy, and wrestling with the 'flu (not Swine 'flu, probably, but bad enough), and trying to balance work and study - more of which in future posts.

I was interested in Prometheus's response to my last post (OMG - that was way back in Feb - ouch!). There's still plenty for the JSF to prove and much of the burden of achievement lies ahead of the project, but as I've noted before the JSF project is like no other fighter project I've ever seen.

Prometheus wrote: "The stealthpart of the Raptor are still handmade in a special of LockMart. So we will see how the JSFs NextGen will be made." When I visited Lockheed Martin's Ft Worth factory in 2008 the group I was part of was shown the surface coating bays where the low-visibility coatings (invisible paint?) will be applied by hand and machine in what, for this type of technology, amounts to a mass production technique.

The game-breaking intent for the JSF program is to make a 5th generation stealth fighter as affordable to buy and operate as a 4th generation fighter. That puts the focus on production engineering as much as on designing and developing the warfighting capabilities of the aircraft. Developing and proving the manufacturing and assembly techniques, getting the supply chain to work to this new paradigm - that's hard work, but it's what's needed to challenge the traditional cost base for combat aircraft. And you couldn't even contemplate such a radical approach without a massive production program and the buy-in of the USAF, USN and US Marines. The Europeans between them don't buy enough of the jets they build to be able to capture these production economies, and the glacial progress of the Eurofighter program has pushed its costs to ridiculous levels.

The challenge for the Europeans is, somehow, to make their collaborative programs more efficient - that means getting several European governments to agree to bite the same bullet that the US government did when it embarked on the JSF program.

Tuesday, 10 February 2009

I hope this answers your question...

Richard Pawloski wrote:

“OK Gregor - well put, and since you are "...at large", I think it would be a good time to speak up. How do you see all this - are there any "winners" first of all, if Australia throws its treasure at an inferior fighter how do you make do? If the argument is all wet, then still, how do you deal with the rising tide of challenge in the Pacific. Is doing nothing going to work? What is your view... I'd sure like to know

Ski”

Richard, I hope this answers your question…

The campaign being run by Air Power Australia, of which Peter Goon is one of the principals, is aimed at displacing the F-35A Lightning 2 Joint Strike Fighter (JSF) from the Australian Defence Force shopping list. There seem to be a number of reasons for this. It is clear that Air Power Australia believes the RAAF should be equipped instead with the F-22A Raptor, and also that the RAAF should keep its F-111C strike aircraft in service for up to another 10 years, and possibly longer (they’re currently due to retire at the end of next year).

These aircraft, so the argument goes, would provide the air defence and strike capabilities Australia needs to deter or defeat a direct attack on its soil or its paramount interests.

Air Power Australia (APA) has questioned the F-35 on three main points: whether or not it is survivable and effective against current and anticipated Russian-developed fighters, air-air missiles and ground-based air defence systems; secondly, whether or not it has the payload and range to be an effective strike aircraft; and thirdly, as a consequence, whether or not the F-35 is the right aircraft for Australia.

These are all separate though inter-related questions and I’ll deal with each in turn.

Air Combat
The air combat tactics and fighter design revolution wrought by John Boyd during the 1960s and ‘70s resulted in the design of (relatively) lightweight, agile fighters such as the F-16 and F-15, leading eventually to the development of the formidable MiG-29 and Su-27/30/35 family. His emphasis on agility and acceleration was driven by the need to get into an adversary’s “six o’clock” and either launch an air-air missile or fire a gun at him from relatively close range.

Assuming a 1 v 1 engagement, in Boyd’s day the advantage lay with the superior platform – once close enough, the pilot of the better aircraft could engage or disengage almost at will.

Boyd also pointed out that “combat always starts at subsonic cruise speed and almost never reaches supersonic speed. Never mind that the trade-offs necessary for an airplane to reach such speeds would seriously degrade dogfighting performance. As for range, there is no faster way to degrade performance on a fighter than to ask for too much.” [“Boyd – The fighter pilot who changed the art of war”, p227: Robert Coram, Back Bay Books – an imprint of Little Brown & Co]

However, Boyd’s thesis may have been overtaken by emerging technologies: by his reasoning neither the F-22A nor the Flanker are designed correctly for the sort of battles he envisaged. In any case, improved seeker heads on air-air missiles can offset platform advantage, and so can a well-integrated weapon system. The crucial ability to engage or disengage at will has become increasingly a function of missile seeker and kinetic performance.

Over 15 years ago I was warned by an air defence analyst at the Defence Science & Technology Organisation (DSTO) in Melbourne that Within Visual Range (WVR) air combat was to be avoided, if at all possible, because the speed, agility and seeker head capabilities of modern WVR missiles meant there was no escape from them: a dog fight between two fighters equipped with modern WVR missiles would become the proverbial knife fight in a telephone booth – mutual death was virtually guaranteed.

To the extent that WVR combat is inescapable (owing to rules of engagement), or the adversary is genuinely inferior, nose pointing ability is as important as sustained turn rate: get your nose even close to the right direction and all-aspect WVR missiles with a high off-boresight engagement capability, and especially those integrated with something like the Joint Helmet Mounted Cueing Device (JHMCD), enable accurate and lethal snap shots which couldn’t be contemplated even a decade ago.

Of course, the picture is clouded by developments such as signature management technologies (IR as well as RF) and the employment of Electronic Counter Measures (ECM). You could analyse these issues to death, but suffice to say that WVR engagements don’t take place within the comfort zone of modern fighter pilots.

This means that air forces necessarily favour engaging adversaries at medium and long range.

The technologies and tactics employed to engage air targets at Beyond Visual Range (BVR) are somewhat different from those required for a WVR engagement. Situational awareness across the entire battlespace is critical, and so is sharing this between elements of a fighter force. So also are new rules of engagement that acknowledge the dangers inherent in WVR combat and seek to employ network-enabled technologies to ensure friendly forces can maintain the initiative and the option to engage at BVR distances.

As the fighter jocks keep saying, the aim is ‘first look, first shot, first kill’. In a BVR engagement thrust to weight ratios, wing loadings, specific excess thrust, and instantaneous and sustained turn rates matter a lot less than they might in a WVR engagement.

The critical determinants of air combat success now include missile performance, the integration of key enablers such as airborne early warning and tankers, and mastery of the electro-magnetic and IR spectra: RF and IR sensors, stealth and countermeasures; low probability of intercept radio communications; Intelligence Surveillance and Reconnaissance (ISR); and shared situational awareness.

The F-35 is designed to be networked and extremely stealthy, in both RF and IR domains. It doesn’t dogfight like a Flanker or an F-22A, but nor do many other aircraft out there, and it does have other unique qualities. Its performance is respectable rather than mind-blowing: think clean F-16, but that’s important, too. With internal fuel and weapons it suffers far less parasitic drag than the vast majority of 4th generation jet fighters and so in combat configuration its acceleration, fuel consumption, range and endurance (and combat persistence) are not degraded as much as an adversary’s (or an ally’s) would be in both cruise and combat.

Did I mention that the internal fuel capacity of an F-35A is roughly the same as the combined internal and external fuel capacity of a Flanker? And that a Flanker carrying nine tonnes of fuel is extremely g-limited?

Air combat isn’t like mediaeval jousting or putting two boxers into a ring to slug it out mano a mano. If you want to use a sporting analogy, you’d want your opponent to have to complete a triathlon before he even comes close to you, so that he arrives after dark in an unfamiliar neighbourhood where you can sneak up and shoot him in the back from a safe distance without laying a glove on him.

We could argue the fine detail on this, in one different scenario after another until Kingdom Come (and I’m sure Peter Goon would be happy to do exactly that); the point I want to make is that for me the old measures of combat capability are relatively less important than they were a generation ago. The complexities of modern air combat provide plenty of opportunities to fight to your strengths and hide your weaknesses.

The Falklands War of 1982 highlighted many of the untidy asymmetries and discontinuities of modern air combat. Despite lacking airborne early warning, and super-cruise, and even a supersonic dash capability, and despite being hamstrung by a high wing loading the Fleet Air Arm’s Sea Harriers destroyed over 20 Argentine Mirages, Skyhawks, Daggers, Canberras, Pucaras and C-130s for no loss – the Sea Harriers had superior AIM-9L Sidewinder missiles, good airborne radars, adequate radar coverage from air defence picket ships (which suffered a terrible toll from the Argentine air attacks), good intelligence from sources well to the west of the Falkland Islands and good tactics. They never once resorted to their party trick of thrust Vectoring in Forward Flight, or VIFF-ing, to out-manoeuvre an opponent.

The Fleet Air Arm’s crushing victory over the Argentine Navy and Air Force in the Falklands was ultimately one of force over force, and this was true also of the RAF’s victory over the Luftwaffe in the Battle of Britain in 1940.

I’m sure students of air power know all this – I just want to provide some background to my reasoning.

Is the F-35 designed with all that in mind? Yes, I think it is. Is it as agile or fast as a Su-27 or F-22A? No. Does that matter? Good question.

Anybody who argues that the ultimate determinant of a force’s air dominance is platform agility in a 1 vs 1 canopy-to-canopy dogfight has far too narrow an understanding of air power.

The great big bogeyman cited by Goon (among others) is the Su-27/30/35 Flanker, a massive aircraft – maximum take-off weight is over 60,000lb - with long range and a M2+ top speed. Yet it is also incredibly agile – in airshow configuration, at least. To impress the crowd it performs maneuvers that would get it shot down in a heartbeat in a real war. But in combat configuration is it as effective as its advocates suggest? Plenty of western fighter pilots who don’t fly the F-22A believe they still have the goods on the Flanker at present; I’m surprised more commentators and analysts don’t ask their opinion.

Air combat superiority is so contextual and so dependent on a range of critical enablers that attempting to compare one aircraft directly with another can be meaningless, unless specific conditions and scenarios are set out. In air combat Strengths, Weaknesses, Opportunities and Threats are not always obvious or intuitive. They frequently emerge only after considerable scenario-based modelling and operational analysis.

Instead of trying to appreciate a situation, there’s a danger that the observer will instead situate his appreciation and draw false or misleading conclusions.

Strike
Much of the above applies also to the strike/attack domain. Stealth matters in this area and even its critics concede the F-35 is well suited to this role.

The issue of range is important: its critics claim the F-35 lacks the payload/range capability of the F-111. But nothing has the much-vaunted payload/range capability of the F-111 – not even the F-111 itself, once it starts turning and burning in reheat at low altitude to evade threats while carrying heavy, draggy bombs and missiles on its underwing pylons.

The F-35 carries more internal fuel than the F-22, more than a Super Hornet carrying external fuel tanks – and much more than a Flanker that’s in combat configuration. Given the typical payload/range of contemporary 4th generation fighters, frankly I’m surprised this is considered to be an issue.

The F-35 was conceived as a strike fighter so not surprisingly it’s designed to perform well and to be survivable against current and anticipated surface-air threats.

There has been some debate recently, triggered by an Air Power Australia analysis, over the F-35’s stealth capabilities and potential vulnerability to new and emerging Russian air defence sensors, fire control systems and missiles. I’m no radar expert but it doesn’t take a doctorate in radar engineering to spot some fairly obvious gaps in the analysis and modelling carried out by critics of the F-35 such as Dr Carlo Kopp.

This isn’t to disparage Kopp gratuitously – he does a conscientious job of trying to analyse the RCS of the F-35 and doesn’t try to conceal the fact he’s working with incomplete and not necessarily accurate data on its shape and surface treatments. It’s reasonable to assume that stealth technology has advanced considerably since the F-22A was designed nearly 20 years ago. So I wonder if he is able to identify, analyse and measure the contribution to the F-35’s RCS from every low-observable treatment or technique embodied in the aircraft? And does his operational analysis take into account air combat tactics which employ the RF and IR spectra and networking technologies in new and unusual ways?

Where I have a problem is with Air Power Australia’s assumption of infallibility: its principals, Kopp and Goon, present the results of their analysis as the definitive judgement on the capabilities of the F-35.

They have disparaged operational analysis and research carried out by others and present their findings as sufficient reason in themselves for Australia to cancel the purchase of the F-35A and instead acquire the F-22A. To see my more detailed examination of their work check out my Blog - http://rumourcontrolblog.blogspot.com/2009/01/happy-new-year-same-old-argument.html.

So how good is the F-35, really?
If it’s not good enough, then nine (and possibly soon eleven) customer governments are in for an embarrassing and very expensive shock.

And that’s the difficulty with the current debate over the F-35: its manufacturer, the Pentagon and the eight international partners can’t really address the detail of much of the criticism levelled against the aircraft without giving too much away. They either tell us too much about the strengths of the aircraft or, if they’ve all been lying to all of their taxpayers about the true capabilities of the F-35, they incriminate themselves.

That sounds like a cop-out on my part, but it’s not. I have asked the questions and got the very same not-very-detailed answers from the RAAF, the Australian department of defence and Lockheed Martin that I’m sure have been provided to people like Kopp, Goon and the Australian Liberal MP Dr Dennis Jensen. These unclassified responses are general, not very informative and can seem simplistic enough that they don’t really inspire much confidence.

Except that I do know people, including sceptics, who’ve had a classified brief on the JSF, and without exception they have all said the briefing answered any criticisms they may have had, and they were confident they weren’t being lied to or manipulated. And they’ve said no more than this, because they are not able to disclose the content of those briefings.

That’s frustrating, and especially so for reporters whose time-honoured modus operandi is to ask a direct question and try to extract a direct, honest reply. In attempting to assess the true capabilities of the aircraft and the integrity of the people building it and contemplating purchasing it, it’s been necessary to do so indirectly, by triangulation and inference rather than direct observation and measurement.

One of the most important indicators is this: I haven’t come across anybody who’s been briefed on the full capability of the aircraft who has subsequently said for any reason that they consider it inadequate in either a general sense or for Australia’s specific needs.

What I’ve heard suggests to me that my earlier thesis about the changing nature of air combat is robust and accurate; that older measures of air combat performance are less important (though not entirely invalidated). What I can’t do is put a hard measure on specific performance or capability parameters.

In the end it comes down to this: whom do you trust? I don’t need to take the word of Lockheed Martin or the RAAF; I’ve got other sources who’ve been sceptical and hardnosed and who’ve had access to classified information. They haven’t shared it with me, but I trust their independence and honesty and have no reason to doubt them when they tell me the F-35 is a very stealthy, capable, survivable combat aircraft.

Air Power Australia argues the exact opposite, and makes no secret of its agenda. To promote the F-22A for Australia and mount a case for retaining the F-111 in RAAF service means, in effect, highlighting every real or perceived shortcoming of the F-35A and every other potential contender, including the F/A-18E/F Super Hornet Block 2.

The asymmetry here is this: there’s a lobby determined that the RAAF shall have the F-22A and most of what its supporters say and do seems directed towards this end. I don’t have an agenda or goal or desired outcome beyond the security of Australia and I’m relatively agnostic about how that’s achieved. The pro-F-22A lobby is also concerned with the security of Australia but defines the issue so narrowly that it can advocate only one paramount capability solution, regardless of cost, regardless of any distorting effect on Australia’s defence budget and broader force structure this solution might have.

Finally, the F-22A isn’t available to Australia, and in my opinion probably will never be. Arguing for a force structure built around an aircraft we may never be allowed to buy is as pointless as buying an aircraft to carry out a job we don’t need it for.

Cost and Schedule
The Eurofighter Typhoon program typifies the delays and difficulties encountered by most modern jet fighter programs. Multi-national programs move at the pace of the slowest and poorest team member. They accrete unnecessary costs through an insistence on uneconomic and inefficient workshare arrangements and multiple final assembly lines: there are no less than four Typhoon final assembly lines for a build of barely 700 aircraft.

By comparison, the F-35 will be assembled on just two lines, in the US and Italy, and its production run is expected to exceed 5,000 units.

More importantly, the project is structured to pursue unit cost reductions compared with previous aircraft, and to hit development and production milestones on time, or as close as possible.

For the first time the focus has been not just on developing the capability of the platform, but doing it in an affordable and timely way. The consequences of designing an aircraft that’s late and too damned expensive, regardless of its capabilities, are illustrated by the B-2 bomber and F-22A Raptor programs.

People outside the aerospace industry simply don’t realize how different the JSF program is from almost every major fighter program that’s gone before.

The Pentagon’s response to Norway’s 2008 Request for Binding Information (RBI) provides a very rough pointer to the costs of the JSF.

Norway’s 48 F-35As would cost US$58.7 million each in 2008 dollars, with deliveries to begin in 2016. The deal includes an initial batch of spares, training and support worth a further US$668.2 million, giving a package price of US$3.486 billion.

However, the JSF program includes a global logistics support and training system and the Pentagon has reportedly quoted a life cycle support cost to Norway of US$2.27 billion, on top of the US$3.486 billion purchase price. So by that reckoning Norway’s 48 JSFs would cost US$5.75 billion over a notional 25 years, or $120 million each including through-life support – all at 2008 dollar values.

Australia plans to order 100 aircraft, so you need to double the figures provided to Norway and add a sizeable chunk for inflation: Australia’s acquisition chief, Dr Steve Gumley, CEO of the Defence Materiel Organisation (DMO) reckons inflation will push up the 2013 unit price to around US$70-75 million an aircraft, and I’d estimate an approximately pro rata increase for the other components. That’s a very rough and imperfect estimate, but it helps calibrate expectations.

That’s a pretty good price for a modern fighter; for a 5th generation fighter, if it delivers its full potential, it represents very good value for money. The JSF Joint Program Office (JPO) in Washington doesn’t help its case politically by stating prices in constant 2002 dollars, or whatever – these are meaningless to most people, the actual figures they cite are unrealistic and the impression is they’re trying to hide something. What matters are the numbers on the cheques the customers will sign.

Without wanting to be a Pollyanna, I firmly believe the JSF project has the best chance of any jet fighter program in recent times of getting close to its cost and schedule targets (we already know it won’t actually meet them). The biggest threat to the project schedule at present is probably the prospect of Congressionally-mandated delays or budget cuts.

That said, the flight test program has now entered the high-risk phase and the potential for delays and difficulties associated with software development and integration for the avionics and sensor suite is enormous. You don’t need to be a rocket scientist to understand things can still go pear-shaped.

Australia’s needs
Back in 2002 the Australian Department of Defence was working up its New Air Combat Capability (NACC) project, code-named Air 6000. Among the platforms it was studying closely were the Typhoon, Rafale, Super Hornet Block 2, Joint Strike Fighter and Saab Gripen. The F-22A was not then, and is not now, available for export.

To the surprise of many people (including myself) the government announced in June of that year Australia would join the System Design and Demonstration (SDD) phase of the JSF program.

It’s arguable that it made this decision after insufficient analysis of its own needs and the alternatives available, and exposed the Australian taxpayer to considerable risk.

It’s also arguable that the US government and Lockheed Martin were able to convince the RAAF and the Australian government (and seven other governments) that the technical, operational and cost advantages of the F-35 were significant enough that the decision was quite an easy one to make.

However, the Australian government hedged its bets by ordering an interim fighter, the Super Hornet Block 2, and delaying a final purchase decision until later this year.

So does the F-35A satisfy Australia’s needs, or does the RAAF really need the F-22A?

The F-22A is designed for high-end air dominance. It’s the 800lb gorilla of air combat. But it’s expensive to buy, requires a lot of maintenance (due to its low observable treatments) and it’s also not the world’s greatest strike aircraft, which is one of the reasons the USAF started developing the F-35A.

Why would you need an 800lb gorilla? Advocates of the F-22A for Australia argue that the regional threat demands it. Threat scenarios in which Australia comes under direct attack by a country whose air forces are equipped with significant numbers of Flankers and the full range of modern Russian air-air and air-surface missiles conjure up visions of a bloody, Battle of Britain-type air battle fought over the Arafura Sea or Indian Ocean.

But are these realistic? Nobody with the power to mount a direct attack on Australia could do so without first taking into account the ANZUS Treaty and the certainty that the US would come to Australia’s assistance, and the political, diplomatic and economic consequences that would result from such an attack.

The only two regional powers with the sheer mass to contemplate a direct assault on Australia are India and China. It’s very hard to imagine circumstances in which India and Australia would come to blows; if such a tragedy were to occur, and the US was unable to assist (again, something that’s extremely difficult to imagine) India would need to reach out right across the Indian Ocean to strike at Australia’s mainland. The difficulties in achieving this, and even of mounting a sustained attack on Australia’s offshore territories or oil and gas installations in the Indian Ocean and Timor Sea should not be under-estimated, regardless of the level and intensity of Australia’s own military response.

Similarly, it’s hard to imagine circumstances in which Australia and China would go to war with each other; but if China did want to mount a direct attack on Australia it would need first to conquer or neutralize in some way the United States and then every sovereign state between Hong Kong and Darwin.

As I said earlier, air combat superiority is very context-dependent. Based on what I’ve read, seen and heard, I’m pretty confident that a force of F-35As armed with the right weapons and backed up with airborne early warning, tankers and an effective ground-based air defence command and control system (and great and powerful allies) will be sufficient to deal with any credible contingency – with emphasis on the word credible.

A direct attack on Australia would be what the strategists call “a war of necessity” – that’s the kind of war you absolutely must win. Other conflicts, such as the wars in Iraq and Afghanistan, can be characterized as “wars of choice” – that is, the Australian government is able to choose, to a very significant degree, the level and duration of Australia’s engagement in such a conflict and the conditions and mechanisms for entry and disengagement. Such a war would almost by definition involve Australia acting as part of a coalition, probably one led by the US. If the threat demanded a capability such as the F-22A then that’s probably what Uncle Sam would deploy.

You could write a book on the broad strategic issues and the fiddly details (and many people have), but in my humble opinion there are no credible scenarios for a war of necessity which would compel Australia to acquire the F-22A; and absolutely no conceivable scenario for a war of choice which demands that Australia buy the F-22A.

Oh, and by the way US law forbids the export of the F-22A in any case; the chances of getting the law changed look pretty slim from where I’m sitting and it’s been said the cost of re-working the F-22A so that it might be exportable (always assuming the production line is still open when this is being deliberated) could be up to US$1 billion over and above the cost of the aircraft themselves – and the US Government isn’t going to pay that out of its own pocket.

Like I said earlier, lobbying for a force structure built around an aircraft we may never be allowed to buy is as pointless as buying an aircraft to carry out a job we don’t need it for.

The debate over Australia’s future air power requirements is important, because Australia’s important. It’s also important because there’s a lot of money at stake.

The late, great Bill Bedford, the test pilot who flew the first successful VSTOL aircraft, the Hawker Siddeley P.1127 Kestrel, once told me, “The perfect is the enemy of the good enough.” That’s a useful maxim to bear in mind when trying to reconcile your needs, wants and resources.

Somebody else (whose name I can’t remember, unfortunately) warned me, when trying to appreciate the situation, not to make the mistake of situating the appreciation.

So what does this mean for Australia’s air power?

In my humble opinion the F-35A will almost certainly be good enough to defend Australia against any credible direct threat and to be deployed to good effect where necessary in support of Australia’s broader interests.

Reservations? The F-35 needs to work – it must negotiate its avionics and software development and flight test programs successfully. It needs to arrive on time and at an affordable cost. And while the claims made for its low observable and electronic warfare performance are credible I have reservations over the nature and mechanism for technology transfer in these areas; this will be controlled by the US government International Trade in Arms Regulations (ITAR) regime which seems designed to confound and insult the intelligence of America’s defence industry and the integrity of America’s allies.

But who gives a damn what I think? I’m not trying to sell anything - I’m just a journalist trying to take a rational approach and make sense of big, complex issues while negotiating my way around agendas, conspiracy theories and the wiles of the military-industrial complex.

Richard, I hope this answers your question: this isn’t an exhaustive march through the theory and practice of air power but some thoughts on why I’m pretty comfortable with the choice of the F-35A, subject to the reservations stated above. I’m not a radar, or propulsion, or EW, or aerodynamics or stealth expert – but I’m a taxpayer in a wealthy country: I have people who do those things for me. I reserve the right to examine, question, report and comment, so far as my knowledge, experience and insight allow, and I do. And I shall continue to do so.

Monday, 12 January 2009

Happy New Year - same old argument

Happy New Year, everybody! This is supposed to be the year in which the Australian cabinet considers 2nd pass Approval for Project Air 6000 - New Air Combat Capability, in other words the purchase (or not) of the F-35A Lightning 2 Joint Strike Fighter (JSF).

So it's no surprise that strident lobby group Air Power Australia put out a media release last week asserting that recent research shows the JSF's stealth qualities are useless against the new generation of Russian long-range air defence misiles and their search and fire control radars. Coincidentally (or not) on the same day the Federal Liberal MP Dr Dennis Jensen, wrote an opinion piece for the Australian Financial Review criticising the JSF, and the Department of Defence for wanting to buy it.

As well as questioning the cost of the aircraft (and either misunderstanding or mis-representing the various cost figures which are floating about at present), Jensen makes two key assertions: the first, based on Dr Carlo Kopp's Radar Cross-Section (RCS) and stealth performance modeling work for Air Power Australia, is that the JSF is not stealthy; the second is that the RAAF, Lockheed Martin, the Pentagon and others are resorting to military secrecy to conceal the fact the JSF is not stealthy. To be quite blunt, he's accusing these organisations of lying to taxpayers and parliament about the capabilities of the JSF.

Jensen states: "Despite what Defence and others may suggest, the basics of capabilities and technologies are in the public domain, and the JSF has no "secret" capabilities, the fundamentals of which are not known in the public domain." He adds, "Be careful when you hear an exhortation that the capability is fantastic, but secret." I'll get to Jensen in a moment, but because he bases much of what he says on Dr Carlo Kopp's analysis, I'll discuss Kopp's work first.

I'm no radar expert, so I'm no position to question much of the mathematics and theoretical physics contained in Dr Carlo Kopp's various papers on platform stealth. I would note, however, that his information on the F-22A Raptor (which he considers to be extremely stealthy) and the F-35A Lightning II (which he considers to be significantly less stealthy, especially in the rear quadrant) is derived from drawings and photographs in the public domain. In his assessment of JSF Defence Penetration Capabilities, Annex C - Joint Strike Fighter Lower Fuselage and Nozzle RCS Modelling (which was the study cited by Dr Jensen), Dr Kopp presents a wireframe model of the JSF lower fuselage, with the caption: "Wireframe rendering of the solid model for JSF lower fuselage geometry employed for RCS modelling. This model accurately represents the complex singly curved section of the lower centre fuselage, but does not represent the longitudinal taper or the problematic doubly curved shapes at the weapon bay and ventral blister transitions. The model was produced by digitising a section from a photograph and after scaling, extending the section into a solid using a custom C language program (Author)."

Such models, derived from public domain photographs and line drawings, seem to be the basis upon which Dr Kopp analyses the RCS and stealth capabilities of these aircraft. As far as I can determine, these models are approximations, albeit relatively faithful, of the real shapes of these aircraft so any RCS data based on them will, by definition, be problematic though to what degree it is hard to say.

Furthermore, it appears Dr Kopp's model of F-35 design features such as the underside of the fuselage and jet nozzle geometry focuses on the shapes of these features and does not take into account attributes such as stealth absorbent coatings, nor the materials from which these elements are fabricated, nor other RCS-attenuating shaping or surface treatments.

That said, he has been diligent in examining what he knows, or can infer, about the design of the JSF and this level of scrutiny can provide an important reality check on some of the raw figures and basic assumptions about the design of the aircraft. It's unlikely that Dr Kopp is the only analyst conducting work of this kind, but he seems to be one of the few to have used his work as the basis for such sustained, vehement criticism of the JSF design.

What troubles me is Dr Kopp’s apparent sense of infallibility: he appears to assume that his shape models of the F-35 and F-22 are sufficiently accurate that he can use them to model the RCS of these aircraft with enough precision to predict their real-world performance. His models may be representative of the RCS of these aircraft, but they may not provide a safe basis for detailed criticism of the aircraft design.

In addition, his modeling appears to be based solely on the shapes of the various structural elements he examines. Notwithstanding an allowance in some of his calculations for radar-absorbent coatings, Dr Kopp’s predictions of RCS and stealth performance seem to ignore other factors contributing to the reduction of RCS. Therefore his assessment of the operational effectiveness of the aircraft may also be unsafe. Undeterred, however, he questions the analytical work undertaken by others: “As with claims made for Joint Strike Fighter air combat capability, claims made for the Joint Strike Fighter concerning the penetration of IADS [Integrated Air Defence Systems] equipped with modern radars and SAMs are not analytically robust, and cannot be taken seriously.”

Lockheed Martin’s response to Dr Dennis Jensen’s article, written by vice president Tom Burbage, addresses the issue of Dr Kopp's RCS modeling and states in part: “Taking the emotion out of the continual criticism from Mr [SIC] Kopp’s group, the technologies of stealth have evolved dramatically from a very basic theoretical understanding of the phenomenology in the early days of F-117, B-2 and A-12. In those days we were limited to rudimentary analysis tools, were very challenged from a computational standpoint (I can recall large CRAY computers running for weeks to calculate facet angles on the F-117) and we had very little experience integrating sensors. All of that early development was done by Lockheed engineers and we spent a lot of internal R&D money to develop the technology. Additionally, we harvested all of the lessons of those programs and today F-35 has the benefit of that plus the benefit of using real US Government and industry experts to oversee our design and development. Today, every element of the airplane’s design is evaluated and integrated to ensure that the design is lethal and survivable. We use internal and external shaping techniques, mature propulsion concepts, advanced aperture and sensor installation techniques, advanced, supportable, light weight materials and other areas that industry and government have invested heavily in over the last decade.

“Most importantly, our analysis and assessment tools and techniques are extremely robust now. Additionally, our modeling and simulation capabilities to demonstrate the effects of these advanced technologies in a projected high threat environment are superb. There have only been three stealth fighters ever built and we have built all three. All of that experience has been applied to the F-35 and our technology, knowledge and experience bases are significantly more advanced today.”

To summarise Burbage’s response: there are techniques and resources not available to Dr Kopp which enable Lockheed Martin and its various government and industry partners to develop a stealthy design for the JSF and refine and validate this using highly sophisticated analysis and assessment tools.

Much of the devil of stealth lies in the detail, hence the requirement for accurate modeling and minute and resource intensive analysis of RCS reduction techniques.

That’s not to suggest projects like JSF shouldn’t be subjected to close scrutiny and I don’t wish to discourage people like Dr Kopp from trying to demonstrate the emperor has no clothes. But Dr Kopp fails to acknowledge a wider body of expertise in stealth technology and therefore presents as incontrovertible fact conclusions based on necessarily limited data.

It must be added also that many mistakenly assume the purpose of stealth is to make an aircraft invisible; this is not the case, and Dr Kopp does understand that. Stealth is designed to reduce, if it can’t entirely eliminate, the likelihood of an aircraft being detected by a sensor of some kind (in this case we’re talking principally about radar), the likelihood of it then being tracked accurately enough for a radar to provide fire control data for a gun or missile system, and then reducing the likelihood of a successful engagement by a missile once this is launched. A stealthy (even semi-stealthy) aircraft derives an important advantage from the deployment of counter-measures: the smaller the RCS of the platform, the larger the apparent RCS of the decoy and so the more effective this is. That’s a very simplistic example, but it serves to illustrate the point.

This is all highly contextual and raw RCS figures based on a flawed, or at least limited, technical analysis don't reflect the tactical subtleties and complexities of modern air combat.

The important measure here is the tactical effectiveness of the aircraft and its weapons, and stealth is just one of the components of effectiveness, albeit in the case of the F-22A and JSF a highly important one.

Defence, Lockheed Martin and the Pentagon appear not to have engaged Air Power Australia and Dr Kopp on the detail of the JSF’s stealth performance for two reasons: firstly, they would reveal more than is safe about the capabilities of the aircraft (and that assumes, as I do, that the JSF is indeed a very stealthy platform – more of this below); and secondly, it doesn’t much matter what they say, in any case. Air Power Australia and Dr Jensen have an unambiguous agenda – to persuade the Australian government to acquire the F-22A; to achieve this they need to highlight any and all of the JSF’s real or perceived deficiencies.

The Head of Defence’s New Air Combat Capability (NACC) project, Air Vice Marshal John Harvey, delivered a by-now characteristically restrained response to Dr Jensen’s article in the Australian Financial Review, noting: “[Kopp’s] analysis of the JSF’s stealth characteristics is flawed based on a number of incorrect assumptions, simplistic modelling, lack of operational analysis and lack of knowledge of sensitive performance information.”

Dr Jensen, despite claiming to have been a research scientist at both CSIRO and DSTO, does not seem to have applied any scientific method to his argument.

After making plenty of assertions but without presenting any supporting data except a reference to Dr Kopp’s analysis for Air Power Australia, Dr Jensen stated: “In short, the JSF is an expensive aircraft, with very limited aerodynamic performance compared to legacy fighters, let alone other advanced fighters. The stealthiness of the aircraft has been shown, with hard numbers, to be poor compared to real stealth aircraft, and its much vaunted networking capability further degrades this.”

Dr Jensen leaves himself open to challenge on almost every aspect of that statement. If he is as interested as he claims to be in this topic there is plenty of credible information in the public domain about the cost and platform performance of the JSF (with the exception of its stealth capabilities, of course), and enough to carry out some theoretical modeling of aircraft performance. His article in the Australian Financial Review was the platform for a poorly constructed attack on the JSF program. In mounting that attack he damaged his own case.

As far as the stealth capabilities of the JSF are concerned, I consider it highly unlikely that anybody associated with the project will disclose detailed RCS data so I need to draw my own conclusions from what I can infer about the project and the behaviours of the various customer and stakeholder groups.

Yes, it is possible that the JSF is the biggest hoax in aviation history: but at US$19 billion (the approximate cost of the System Development and Demonstration, or SDD, phase) it’s a bloody expensive joke, and the Pentagon simply doesn’t have a sense of humour.

Secondly, it is possible that Dr Kopp is the only analyst who has uncovered the hidden weakness of the JSF, or the only analyst with the courage to say so out loud. I think that’s insulting to the many thousands of excellent scientists and engineers around the world who have contributed to the design and development of the JSF or who, on behalf of their respective governments, have carried out studies to validate (or not) the claims for it made by the manufacturer and the Pentagon.

If the JSF was a complete dog somebody would have made the case convincingly by now – heaven knows there are enough alternatives on the market whose manufacturers would make it worth somebody’s while, and no government knowingly spends billions of dollars on unsuitable aircraft.

Thirdly, no government which has joined the program has subsequently withdrawn from it on either cost or capability grounds; conversely, at least two other countries – Israel and Singapore – now want to join the program in some capacity. This suggests the claims made for its stealth capability are based on robust and realistic measures: stealth is so much a core feature of the design that a degraded RCS would undermine much of the justification for the project, regardless of the other attributes of the aircraft.

Fourthly, the JSF has already fought and won its first battle: in spite of strong pressure from its Scandinavian neighbour, Sweden, Norway last year selected the F-35A as the replacement for its ageing fleet of F-16A/B fighters. Swedish aircraft manufacturer Saab was offering its Gripen NG fighter and a very attractive industry participation program but in spite of this pressure Norway’s own analysis showed the JSF was the superior aircraft and offered better value for money.

Finally, the suggestion that there is a widespread conspiracy, involving nine governments and 12 separate air arms to conceal significant shortcomings in the design of the JSF doesn’t withstand scrutiny: the program itself has weathered plenty of hostile scrutiny from within the US armed forces as well as the Pentagon, the Senate and Congress, not to mention parliaments, defence forces and rival aircraft manufacturers around the world. There seems to have been no significant loss of faith that the aircraft will eventually deliver the capabilities promised, though plenty of concern about the cost and schedule of the project.

Conspiracy theories tend to evaporate when examined rationally.

Tuesday, 30 September 2008

JSF Update

I've added a new paper to my Rumour Control web site - this one is a brief and rather unstructured update on the Joint Strike Fighter (JSF) program and deals with some of the programatics of the project as well as the ongoing debate over what it will, or should, or might cost.

The paper is accessible here: http://www.rumourcontrol.com.au/analysis/JSF_September_2008.pdf

It also touches on what seems to me to be a growing problem: a misunderstanding of the design aims and technologies of the JSF and other aircraft and the resulting tendency on the part of some observers and commentators to use wrong or incorrectly calibrated benchmarks for assessing their capabilities.

There ought to be a Ph.D in this - but I haven't got time.